6 research outputs found

    Path Ranking with Attention to Type Hierarchies

    Full text link
    The objective of the knowledge base completion problem is to infer missing information from existing facts in a knowledge base. Prior work has demonstrated the effectiveness of path-ranking based methods, which solve the problem by discovering observable patterns in knowledge graphs, consisting of nodes representing entities and edges representing relations. However, these patterns either lack accuracy because they rely solely on relations or cannot easily generalize due to the direct use of specific entity information. We introduce Attentive Path Ranking, a novel path pattern representation that leverages type hierarchies of entities to both avoid ambiguity and maintain generalization. Then, we present an end-to-end trained attention-based RNN model to discover the new path patterns from data. Experiments conducted on benchmark knowledge base completion datasets WN18RR and FB15k-237 demonstrate that the proposed model outperforms existing methods on the fact prediction task by statistically significant margins of 26% and 10%, respectively. Furthermore, quantitative and qualitative analyses show that the path patterns balance between generalization and discrimination.Comment: Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20

    Using Multi-Relational Embeddings as Knowledge Graph Representations for Robotics Applications

    Get PDF
    User demonstrations of robot tasks in everyday environments, such as households, can be brittle due in part to the dynamic, diverse, and complex properties of those environments. Humans can find solutions in ambiguous or unfamiliar situations by using a wealth of common-sense knowledge about their domains to make informed generalizations. For example, likely locations for food in a novel household. Prior work has shown that robots can benefit from reasoning about this type of semantic knowledge, which can be modeled as a knowledge graph of interrelated facts that define whether a relationship exists between two entities. Semantic reasoning about domain knowledge using knowledge graph representations has improved the robustness and usability of end user robots by enabling more fault tolerant task execution. Knowledge graph representations define the underlying representation of facts, how facts are organized, and implement semantic reasoning by defining the possible computations over facts (e.g. association, fact-prediction). This thesis examines the use of multi-relational embeddings as knowledge graph representations within the context of robust task execution and develops methods to explain the inferences of and sequentially train multi-relational embeddings. This thesis contributes: (i) a survey of knowledge graph representations that model semantic domain knowledge in robotics, (ii) the development and evaluation of our knowledge graph representation based on multi-relational embeddings, (iii) the integration of our knowledge graph representation into a robot architecture to improve robust task execution, (iv) the development and evaluation of methods to sequentially update multi-relational embeddings, and (v) the development and evaluation of an inference reconciliation framework for multi-relational embeddings.Ph.D

    Continual learning of knowledge graph embeddings

    No full text
    In recent years, there has been a resurgence in methods that use distributed (neural) representations to represent and reason about semantic knowledge for robotics applications. However, while robots often observe previously unknown concepts, these representations typically assume that all concepts are known a priori, and incorporating new information requires all concepts to be learned afresh. Our work relaxes the static assumptions of these representations to tackle the incremental knowledge graph embedding problem by leveraging principles of a range of continual learning methods. Through an experimental evaluation with several knowledge graphs and embedding representations, we provide insights about trade-offs for practitioners to match a semantics-driven robotics application to a suitable continual knowledge graph embedding method.Comment: 8 pages, 4 figures. Accepted for publication in IEEE Robotics and Automation Letters (RA-L
    corecore